Aflati aria rombului ABCD in care AB=10cm , Ac=16 cm.

Răspuns :

Desenezi un romb și începi notarea cu A din partea stângă și continui cu B;C;D in sensul invers acelor de ceasornic.

AC intersectat cu BD={O}

AO= [tex]\dfrac{AC}{2}[/tex]=[tex]\dfrac{16}{2}[/tex]=8cm

∆AOB=dr.; m(<O)=90°

BO²=AC²-AO²

BO= [tex]\sqrt{16^{2}-8^{2}}[/tex]= [tex]\sqrt{256- 64}[/tex]= [tex]\sqrt{192}[/tex]=8[tex]\sqrt{3}[/tex] cm

BD=2BO=2·8[tex]\sqrt{3}[/tex]= 16[tex]\sqrt{3}[/tex]

A=[tex]\dfrac{d\cdot d}{2}[/tex]=[tex]\dfrac{AC\sqrt BD}{2}[/tex]=[tex]\dfrac{16\cdot 16\sqrt{3}}{2}[/tex]

=16·8[tex]\sqrt{3}[/tex]=128[tex]\sqrt{3}[/tex] cm²