Răspuns :
Secțiunea diagonala a unui cub este un dreptunghi cu lățimea = latura cubului iar Lungimea = diagonala cubului.
Prin urmare, aria secțiunii diagonale a cubului = aria dreptunghiului, adică A = L • l .
[tex]A=l*l \sqrt{2} \ \textless \ =\ \textgreater \ 36 \sqrt{2} =l^2\sqrt{2} =\ \textgreater \ l^2= \frac{36 \sqrt{2} }{ \sqrt{2} } =\ \textgreater \ l^2=36=\ \textgreater \ l=6cm\\\\
V=l^2\ \textless \ =\ \textgreater \ V=6^3=\ \textgreater \ V=36*6=\ \textgreater \ V=216cm^3[/tex]
Prin urmare, aria secțiunii diagonale a cubului = aria dreptunghiului, adică A = L • l .
[tex]A=l*l \sqrt{2} \ \textless \ =\ \textgreater \ 36 \sqrt{2} =l^2\sqrt{2} =\ \textgreater \ l^2= \frac{36 \sqrt{2} }{ \sqrt{2} } =\ \textgreater \ l^2=36=\ \textgreater \ l=6cm\\\\
V=l^2\ \textless \ =\ \textgreater \ V=6^3=\ \textgreater \ V=36*6=\ \textgreater \ V=216cm^3[/tex]
Vă mulțumim că ați vizitat platforma noastră dedicată Matematică. Ne bucurăm dacă informațiile v-au fost de ajutor. Dacă aveți întrebări suplimentare sau aveți nevoie de asistență, nu ezitați să ne contactați. Revenirea dumneavoastră ne-ar onora, așa că nu uitați să ne adăugați la favorite!