Fiind dat un şir de numere, denumim secvenţă a acestuia o parte dintre termenii şirului luaţi de pe poziţii consecutive. Denumim platou al acestui şir o secvenţă formată din valori identice. Lungimea unui platou este egală cu numărul de elemente care îl formează.
De exemplu, în şirul de numere 1 1 1 7 7 3 4 4 4 7 7 avem:
platourile 1 1 1 şi 4 4 4 ambele având lungimea 3;
platourile 7 7 (cel care începe în poziţia a patra) şi 7 7 (cel care începe pe poziţia a zecea), ambele având lungimea 2;
platoul 3 care are lungimea 1.
În schimb nu avem platoul 7 7 7 7 deoarece cele patru elemente egale cu 7 nu sunt pe poziţii consecutive!
Se dă un şir de n numere. Fiecare dintre aceste numere aparţine intervalului [0,5000000]. Asupra acestui şir se pot efectua o singură dată următoarele două operaţiuni în această ordine:
se extrage un platou la alegere;
se inserează platoul extras la pasul anterior într-o poziţie la alegere din şirul rezultat după extragere.
De exemplu, dacă avem următorul şir inițial: 2 2 5 0 5 8 8 8 4 9 9 9 0 0 2 2 8 extragem platoul 2 2 format din elementele aflate în penultima şi antepenultima poziţie şi obţinem şirul: 2 2 5 0 5 8 8 8 4 9 9 9 0 0 8
În şirul rezultat inserăm platoul 2 2 (pe care l-am extras în pasul anterior) în poziţia a doua şi obţinem şirul: 2 2 2 2 5 0 5 8 8 8 4 9 9 9 0 0 8
Să se scrie un program care pentru un şir dat determina:
1: lungimea maximă a unui platou care poate să apară în şir în urma efectuării celor două operaţiuni de maxim k ori
2: elementul din care este format platoul
Date de intrare
Programul va citi:
pe prima linie un număr natural k;
pe a doua linie un număr natual n;
pe a treia linie un şir de n numere naturale separate prin câte un spaţiu, reprezentând elementele şirului dat. Fiecare dintre aceste numere aparţine intervalului [0,10000].
pe a patra linie p, care reprezinta cerinta
Date de ieșire
Programul va afisa lungimea maximă a unui platou care poate să apară în şir în urma efectuării celor două operaţiuni de maxim k ori sau elementul din care este format platoul.
Restricții și precizări
1 ≤ n ≤ 1000000
1 ≤ k ≤ 100
numerele aparțin intervalului [0,10000].
pentru cerinta 1 – 50% din punctaj
pentru cerinta 2 – 50% din punctaj
daca sunt mai multe numere care au platou de lungime maxima se va afisa cel mai mare
Vă mulțumim că ați vizitat platforma noastră dedicată Informatică. Ne bucurăm dacă informațiile v-au fost de ajutor. Dacă aveți întrebări suplimentare sau aveți nevoie de asistență, nu ezitați să ne contactați. Revenirea dumneavoastră ne-ar onora, așa că nu uitați să ne adăugați la favorite!