[tex]f:(0,+\infty) \rightarrow \mathbb{R},\quad f(x) = \dfrac{1}{x^2} \\ \\ F:\mathbb{R}\rightarrow \mathbb{R},\quad F(x) = (x-1)\cdot e^x\quad (\text{Primitiva a lui f}) \\ \\F'(x)= \Big[(x-1)\cdot e^x\Big]' = (x-1)'\cdot e^x+(x-1)\cdot (e^x)' = \\ = e^x+(x-1)\cdot e^x = e^x\cdot \Big[1+(x-1)\Big] = e^x\cdot x \neq f(x) \\ \\ \Rightarrow \boxed{F(x) \text{ nu este primitiva lui } f(x)}[/tex]