a)
[tex]-(\frac{3 a^{3} b}{4} ) : (- \frac{ab}{2} )= -(\frac{3 a^{3} b}{4} ) *(- \frac{2}{ab} )[/tex] = [tex] \frac{3 a^{2} }{2} [/tex]
b)
[tex]-( \frac{18 x^{4} y^{3} z^{2} }{25} ) : (- \frac{3 x^{2} y z^{2} }{50} ) = -( \frac{18 x^{4} y^{3} z^{2} }{25} ) * (- \frac{50}{3 x^{2} y z^{2}} )= 12 x^{2} y^{2} [/tex]
c)
[tex]-( \frac{16 x^{5} y^{2} z^{2} }{1}) : (- \frac{2 x^{5}yz }{3} )=-( \frac{16 x^{5} y^{2} z^{2} }{1}) *(- \frac{3}{2 x^{5}yz} )= 18yz[/tex]
d)
[tex]-( \frac{20 a^{4} b^{6} c^{10} }{9} ) : (- \frac{4 a^{2} b^{5} }{5} ) : (- \frac{5a c^{8} }{2}) = -( \frac{20 a^{4} b^{6} c^{10} }{9} ) * (- \frac{5}{4a^{2} b^{5}})*(- \frac{2}{5a c^{8}}) = [/tex]
= [tex] \frac{25a^{2}bc^{10} }{9} * (- \frac{2}{5a c^{8} } ) = - \frac{10abc^{2} }{9} [/tex]
Acele "litere" care sunt puse in dreptul liniei de fractie, se considera defapt ca fiind la numarator. Trebuiau doar simplificate puterile si toate numerele care mergeau. Stim ca,atunci cand impartirea se transforma-n inmultire, fractia trebuie rasturnata.