[tex]\displaystyle\\
38)\\
a,~b,~c~~\text{ d.p. cu }~~1,\!(4),~1,\!(5),~\!(6)\\
a+b+c=84\\
\text{Rezolvare:}\\\\
\frac{a}{1,\!(4)} = \frac{b}{1,\!(5)} = \frac{c}{1,\!(6)} =k\\\\
a=1,\!(4)k;~~b=1,\!(5)k;~~c=1,\!(6)k\\\\
a+b+c=184\\\\
1,\!(4)k+1,\!(5)k+1,\!(6)k=84\\\\
k(1,\!(4)+1,\!(5)+1,\!(6))=84\\\\
k\left(\frac{14-1}{9}+\frac{15-1}{9}+\frac{16-1}{9}\right)=84\\\\
k\left(\frac{13}{9}+\frac{14}{9}+\frac{15}{9}\right)=84\\\\
k\cdot\frac{13+14+15}{9}=84\\\\
k\cdot\frac{42}{9}=84\\
k=84\cdot\frac{9}{42}=\boxed{18}[/tex]
[tex]\displaystyle\\
a=1,\!(4)k= \frac{13}{9}k= \frac{13}{9}\cdot 18= 13\cdot 2=\boxed{\bf 26}\\\\
b=1,\!(5)k= \frac{14}{9}k= \frac{14}{9}\cdot 18= 14\cdot 2=\boxed{\bf 28}\\\\
c=1,\!(6)k= \frac{15}{9}k= \frac{15}{9}\cdot 18= 15\cdot 2=\boxed{\bf 30}\\\\
\text{Verificare:}\\
26+28+30 = 84[/tex]
[tex]\displaystyle\\
39)\\
x,~y,~z~~~\text{ d.p. cu }~~~3,~4,~5\\
x+2y+3z=78\\\\
\text{Rezolvare:}\\\\
\frac{x}{3} =\frac{y}{4} =\frac{z}{5} =k\\\\
x=3k\\
y=4k\\
z=5k\\\\
x+2y+3z=78\\\\
3k+2\cdot 4k+3\cdot 5k=78\\\\
3k+8k+15k=78\\\\
26k=78\\\\
k = \frac{78}{26} =3\\\\
x=3k=3\cdot 3=\boxed{9}\\
y=4k=4\cdot 3=\boxed{12}\\
z=5k=5\cdot 3=\boxed{15}\\
\text{Verificare:}\\
x+2y+3z=9+2\cdot12+3\cdot 15=9+24+45=78[/tex]