[tex]a=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+\ldots+\dfrac{1}{1+2+\ldots+200}\\
\\
a=1+\dfrac{1}{\frac{2\cdot 3}{2}}+\dfrac{1}{\frac{3\cdot 4}{2}}+\ldots +\dfrac{1}{\frac{200\cdot 201}{2}}\\
\\
a=1+\dfrac{2}{2\cdot 3}+\dfrac{2}{3\cdot 4}+\ldots+\dfrac{2}{200\cdot 201}\\
a=2\left(\dfrac{1}{1\cdot 2}+\dfrac{1}{2\cdot 3}+\ldots +\dfrac{1}{200\cdot 201}\right)\\
\\
a=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\ldots +\dfrac{1}{200}-\dfrac{1}{201}\right)\\
\\
a=2\cdot \left(1-\dfrac{1}{201}\right)
[/tex]
[tex]a=2\cdot \dfrac{200}{201}\\
\\
2,01\cdot a=\dfrac{201}{100} \cdot 2\cdot \dfrac{200}{201}=4=2^2[/tex]