[tex] {x}^{2} + 2x + 3 = 0[/tex]
[tex]a = 1[/tex]
[tex]b = 2[/tex]
[tex]c = 3[/tex]
[tex]\Delta = {b}^{2} - 4ac[/tex]
[tex]\Delta = {2}^{2} - 4 \times 1 \times 3[/tex]
[tex]\Delta = 4 - 12[/tex]
[tex]\Delta = - 8 < 0 = > \nexists \: x_{1},x_{2}\:\in\:\mathbb{R}[/tex]
[tex] = > \exists \: x_{1}\:\neq\:x_{2}\:\in\:\mathbb{C}[/tex]
[tex]x_{1,2}=\frac{-b\pm\:i\sqrt{-\Delta}}{2a}[/tex]
[tex]x_{1,2}=\frac{-2\pm\:i\sqrt{ - (-8)}}{2 \times 1}[/tex]
[tex]x_{1,2}=\frac{-2\pm\:i\sqrt{8}}{2}[/tex]
[tex]x_{1,2}=\frac{-2\pm\:2 \sqrt{2}i }{2}[/tex]
[tex]x_{1}=\frac{-2 + \:2 \sqrt{2}i }{2}[/tex]
[tex]x_{1}=\frac{2( - 1+ \sqrt{2}i )}{2}[/tex]
[tex]x_{1}= - 1+ \sqrt{2}i [/tex]
[tex]x_{2}=\frac{ - 2-2\sqrt{2}i }{2}[/tex]
[tex]x_{2}=\frac{2( - 1-\sqrt{2}i )}{2}[/tex]
[tex]x_{2}=- 1-\sqrt{2}i [/tex]