Răspuns :
[tex]a) {x}^{2} = 0 \\\\
x = \sqrt{0} \\\\
x = 0 \\\\
b) {x}^{2} = - 2 \\\\
x = \pm \sqrt{ - 2} = > ecuatia \: nu \: are \: radacini\: reale \\ \\
= > ecuatia \: are \: radacini \: complexe \\\\
= > x = \pm \: i \sqrt{2}\\ \\ c) {x}^{2} = 16 \\\\ x = \pm \sqrt{16} \\ \\x = \pm4 \\ \\d)4 {x}^{2} = 64 \\\\ {x}^{2} = \frac{64}{4} \\ \\{x}^{2} = 16 \\ \\x = \pm \sqrt{16} \\ \\x = \pm4 \\ \\e)3 {x}^{2} = 108 \\\\ {x}^{2} = \frac{108}{3} \\\\ {x}^{2} = 36 \\\\ x = \pm \sqrt{36} \\\\ x = \pm6 \\\\ f) {x}^{2} + 4 = 5 \\\\ {x}^{2} = 5 - 4\\ \\ {x}^{2} = 1\\ \\ x = \pm \sqrt{1} \\\\ x = \pm1 \\\\ g)3 {x}^{2} + 2 = {1}^{2} + ( - 1) \\\\ 3 {x}^{2} + 2 = 1 - 1 \\\\ 3 {x}^{2} + 2 = 0 \\\\ 3 {x}^{2} = - 2 \\ \\{x}^{2} = - \frac{2}{3} \\\\ x = \pm \sqrt{ - \frac{2}{3} } = > ecuatia \: nu \: are \: radacini \: reale\\ \\ = > ecuatia \: are \: radacini \: complexe\\\\ x = \pm \: i \sqrt{ \frac{2}{3} } \\\\ h) {x}^{2} + 1 = {( \sqrt{3} )}^{2}\\ \\ {x}^{2} + 1 = 3\\ \\ {x}^{2} = 3 - 1 \\\\ {x}^{2} = 2 \\\\ x = \pm \sqrt{2}\\ \\ i) {x}^{2} = \frac{4}{25} \\ \\x = \pm \sqrt{ \frac{4}{25} }\\ \\ x = \pm \frac{ \sqrt{4} }{ \sqrt{25} } \\\\ x = \pm \frac{2}{5} [/tex]
x = \sqrt{0} \\\\
x = 0 \\\\
b) {x}^{2} = - 2 \\\\
x = \pm \sqrt{ - 2} = > ecuatia \: nu \: are \: radacini\: reale \\ \\
= > ecuatia \: are \: radacini \: complexe \\\\
= > x = \pm \: i \sqrt{2}\\ \\ c) {x}^{2} = 16 \\\\ x = \pm \sqrt{16} \\ \\x = \pm4 \\ \\d)4 {x}^{2} = 64 \\\\ {x}^{2} = \frac{64}{4} \\ \\{x}^{2} = 16 \\ \\x = \pm \sqrt{16} \\ \\x = \pm4 \\ \\e)3 {x}^{2} = 108 \\\\ {x}^{2} = \frac{108}{3} \\\\ {x}^{2} = 36 \\\\ x = \pm \sqrt{36} \\\\ x = \pm6 \\\\ f) {x}^{2} + 4 = 5 \\\\ {x}^{2} = 5 - 4\\ \\ {x}^{2} = 1\\ \\ x = \pm \sqrt{1} \\\\ x = \pm1 \\\\ g)3 {x}^{2} + 2 = {1}^{2} + ( - 1) \\\\ 3 {x}^{2} + 2 = 1 - 1 \\\\ 3 {x}^{2} + 2 = 0 \\\\ 3 {x}^{2} = - 2 \\ \\{x}^{2} = - \frac{2}{3} \\\\ x = \pm \sqrt{ - \frac{2}{3} } = > ecuatia \: nu \: are \: radacini \: reale\\ \\ = > ecuatia \: are \: radacini \: complexe\\\\ x = \pm \: i \sqrt{ \frac{2}{3} } \\\\ h) {x}^{2} + 1 = {( \sqrt{3} )}^{2}\\ \\ {x}^{2} + 1 = 3\\ \\ {x}^{2} = 3 - 1 \\\\ {x}^{2} = 2 \\\\ x = \pm \sqrt{2}\\ \\ i) {x}^{2} = \frac{4}{25} \\ \\x = \pm \sqrt{ \frac{4}{25} }\\ \\ x = \pm \frac{ \sqrt{4} }{ \sqrt{25} } \\\\ x = \pm \frac{2}{5} [/tex]
Vă mulțumim că ați vizitat platforma noastră dedicată Matematică. Ne bucurăm dacă informațiile v-au fost de ajutor. Dacă aveți întrebări suplimentare sau aveți nevoie de asistență, nu ezitați să ne contactați. Revenirea dumneavoastră ne-ar onora, așa că nu uitați să ne adăugați la favorite!