[tex]\left(\frac{f}{g}\right)'=\frac{f'\cdot g-g'\cdot f}{g^2} =\ \textgreater \ \frac{\left(x+2018\right)e^x-\left(e^x\right)\left(x+2018\right)}{\left(e^x\right)^2} \\=\ \textgreater \ \frac{1\cdot \:e^x-e^x\left(x+2018\right)}{\left(e^x\right)^2} =\frac{-x-2017}{e^x} \ \textless \ =\ \textgreater \ \frac{-(x+2017)}{e^x}[/tex]