Calculam det(A(m)).
[tex]det(A(m))=[/tex][tex]\left|\begin{array}{ccc}m-1&-1\\2&m-2\end{array}\right|=(m-1)(m-2)-2*(-1)=m^{2}-2m-m+2+2[/tex][tex]=m^{2}-3m+4[/tex]
Rezolvam ecuatia:
m²-3m+4=0
Δ=(-3)²-4*1*4=9-16=-7
Cum Δ<0, ecuatia nu are solutii reale.
Daca ecuatia nu are solutii reala, inseamna ca oricare ar fi m din R, det(A(m))≠0, adica matricea A(m) este inversabila, oricare ar fi m din R.