[tex]\text{Vom demonstra inegalitatea prin calcul direct.}\\
\dfrac{a^2}{x}+\dfrac{b^2}{y}\geq \dfrac{(a+b)^2}{x+y}|\cdot (x+y)\\
\dfrac{a^2(x+y)}{x}+\dfrac{b^2(x+y)}{y} \geq (a+b)^2\\
\dfrac{a^2\cdot x+a^2\cdot y}{x}+\dfrac{b^2\cdot x+b^2\cdot y}{y}\geq a^2+2ab+b^2\\
a^2+\dfrac{a^2\cdot y}{x}+b^2+ \dfrac{b^2\cdot x}{y}\geq a^2+b^2+2ab\\
a^2\cdot \dfrac{y}{x}+b^2\cdot \dfrac{x}{y}\geq 2ab
[/tex][tex]\text{Din inegalitatea mediilor avem ca:}\\
a^2\cdot \dfrac{y}{x}+b^2\cdot \dfrac{x}{y}\geq 2\sqrt{a^2\cdot \dfrac{y}{x}\cdot b^2\cdot \dfrac{x}{y}}= 2ab ,c.c.t.d.\\
\text{Mai departe avem ca :}\\
\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\geq \dfrac{(a+b)^2}{x+y}+\dfrac{c^2}{z}\geq \dfrac{(a+b+c)^2}{x+y+z}, Q.E.D[/tex]