[tex]\it a^3+b^3 = (a+b)(a^2-ab+b^2)
\\ \\
(\sqrt[3] {\it 2})^3 + (\sqrt[3] {\it 3})^3 = (\sqrt[3]{ \it2} +\sqrt[3]{ \it 3})(\sqrt[3]{ \it4} -\sqrt[3]{ \it 6} +\sqrt[3]{ \it 9}) \Longrightarrow
\\ \\
\Longrightarrow 2+3 =(\sqrt[3]{ \it2} +\sqrt[3]{ \it 3})(\sqrt[3]{ \it4} -\sqrt[3]{ \it 6} +\sqrt[3]{ \it 9}) \Longrightarrow
\\ \\
\Longrightarrow 5 = (\sqrt[3]{ \it2} +\sqrt[3]{ \it 3})(\sqrt[3]{ \it4} -\sqrt[3]{ \it 6} +\sqrt[3]{ \it 9}) [/tex]
Se amplifică fracția cu [tex]\sqrt[3]{ \it4} -\sqrt[3]{ \it 6} +\sqrt[3]{ \it 9}[/tex],
și rezultă : [tex]\it \dfrac{\sqrt[3]{ \it4} -\sqrt[3]{ \it 6} +\sqrt[3]{ \it 9}}{5}[/tex]