In ambele cazuri, forta elastica joaca rol de forta centripeta. Astfel:
[tex] \vec{F}_{cp1}=\vec{F}_{e1}=\implies k(l_1-l_0)=\dfrac{mv_1^2}{l_1} [/tex]
[tex] \vec{F}_{cp2}=\vec{F}_{e2}=\implies k(l_2-l_0)=\dfrac{mv_2^2}{l_2} [/tex]
Impartind cele doua relatii pentru a simplifica calculele, obtinem:
[tex] \dfrac{l_1-l_0}{l_2-l_0}=\dfrac{v_1^2l_2}{v_2^2l_1} [/tex]
[tex] l_2^2v_1^2-l_0v_1^2l_2=l_1^2v_2^2-l_0l_1v_2^2 [/tex]
[tex] l_0(l_1v_2^2-l_2v_1^2)=l_1^2v_2^2-l_2^2v_1^2\implies \boxed{l_0=\dfrac{l_1^2v_2^2-l_2^2v_1^2}{l_1v_2^2-l_2v_1^2}=0,25m} [/tex]