1)
a)2x+1=-5
2x=-5-1=-6
[tex]x = - \frac{6}{2} = - 3 [/tex]
b)0,5x-1,3=2,7
0,5x=2,7+1,3=4
[tex]x = \frac{4}{0,5} = 8 [/tex]
2)
2(x+1)-3(2-x)=x+3(2x+1)
2x-2-6+3x=x+6x+3
5x-4=x+6x+3=7x+3
-4=7x+3-5x
-4=2x+3
-4-3=2x
-7=2x
[tex] - \frac{7}{2} = x \\ \\ x = - \frac{7}{2} [/tex]
3)
3+2x²-(x-2)²=-3x-7
x²+1x+6x+6=
x•(x+1)=
6•(x+1)=
(x+6)(x+1)
(x+6)(x+1)=0
x+6=0=>x=-6
x+1=0=>x=-1
4)
(x+1)²+2(x-2)(x+2)=(3x-1)(x-3)+2
x²+2x+1+2x²+4x-4x-8=3x²-9x-x+3+2
x²+2x+1+2x²-8=3x²-9x-x+3+2
3x²+2x-7=3x²-9x-x+3+2
3x²+2x-7=3x²-10x+5
2x-7=-10x+5
2x=-10x+5+7=-10x+12
2x+10x=12
12x=12
x=1
5)Două ecuații sunt echivalente dacă au același domeniu de variație și aceeași mulțime de soluție.În acest caz,prima ecuație este echivalentă,iar a doua nu este echivalentă,pentru că nu are aceeași soluție ca la a).
[tex] a) - 2x + 3(x - 3) + \frac{x - 1}{2} = \frac{x + 1}{3} - \frac{x + 3 }{6} [/tex]
-12x+18(x-3)+3(x-1)=2(x+1)-x-3
-12x+18x-54+3x-3=2x+2-x-3
9x-57=2x+2-x-3=x-1
9x=x-1+57=x+56
9x-x=56
8x=56
[tex]x = \frac{56}{8} = 7 [/tex]
b)mx-3+2x=2(m-x)+5
mx-3+2x=2m-2x+5
-3+2x=2m-2x+5-mx
2x-3=2m-2x+5-mx
2x-3+2x=2m+5-mx
4x-3=2m+5-mx
4x-3-5=2mx-mx
4x-8=2mx-mx
4x-8=m(2-x)
[tex] \frac{4x - 8}{2 - x} = m \\ \\ \frac{4(x - 2)}{2 - x} = m \\ \\ - \frac{4( - x + 2)}{2 - x} = m \\ \\ - \frac{4(2 - x)}{2 - x} = m \\ \\ - 4 = m \\ \\ m = - 4 [/tex]
Succes!