5.
a) 3√7 - 2√7 + 8√7 - √7 = √7·(3 - 2 + 8 - 1) = 8√7
b) 2√(27) + 4√(12) - 3√(75) = 2√(3³) + 4√(2²·3) - 3√(5³) = 2·3√3 +4·2√3 -3·5√3 = 6√3 + 8√3 -15√3 = √3· (6 + 8 -15) = √3· (-1) = -√3
c) (5√5 + √45)·√5= (5√5 + √(5·3²)·√5=(5√5 + 3√(5)·√5 = 8√5·√5= 8 · 5 = 40
d)[tex](\sqrt{18} -\sqrt{6} ):\sqrt{2}=\frac{(\sqrt{18} -\sqrt{6} )}{\sqrt{2}}=\frac{(3\sqrt{2} -\sqrt{6} )}{\sqrt{2}}[/tex]
se rationalizeaza
[tex](\frac{3\sqrt{2}-\sqrt{6})\cdot\sqrt{2}}{2}=\frac{6-2\sqrt{3}}{2} =3-\sqrt{3}[/tex]
6.
a) [tex]\sqrt{(-7)^{2}} =7[/tex]
[tex]b)(\sqrt{3})^{5}\cdot (\sqrt{3}) =\\ \\ (\sqrt{3})^{5}=3^{2}\cdot\sqrt{3} \\ \\3^{2}\cdot\sqrt{3}\cdot \sqrt{3}=3^{2}\cdot3=3^{3}=\\ \\=27[/tex]
[tex]c)\sqrt{(75)^{3}}:(\sqrt{3})^{3}=\\ \\ 75=3\cdot5^{2} ;\sqrt{(75)^{3}}=75\cdot\sqrt{75} =75\cdot5\sqrt{3} =375\sqrt{3}\\ (\sqrt{3})^{3}=\sqrt{3}\cdot\sqrt{3}\cdot\sqrt{3} =3\sqrt{3}\\ \\375\sqrt{3}:3\sqrt{3}=125[/tex]