[tex] {4}^{2n} + {2}^{2n + 1} + 1[/tex]
[tex] = {( {2}^{2}) }^{2n} + {2}^{2n} \times 2 + 1[/tex]
[tex] = { ({2}^{2n} )}^{2} + {2}^{2n} \times 2 + 1[/tex]
[tex] = {( {2}^{2n} + 1)}^{2} = > p.p[/tex]
Formulă :
[tex] {(a + b)}^{2} = {a}^{2} + 2ab + {b}^{2} [/tex]
[tex]a = {2}^{2n} [/tex]
[tex]b = 1[/tex]