Răspuns
Explicație pas cu pas:
b) x ≠ ±1;
[tex]\frac{2}{x+1} , \frac{3}{x-1} \\\frac{2(x-1)}{x^{2} -1\\} , \frac{3(x+1)}{x^{2}-1 }[/tex]
c) x ≠ 0;
[tex]\frac{4}{x} \frac{1}{3x} \frac{2}{x+1} \\\frac{3.4(x+1)}{3x(x+1)} \frac{x+1}{3x(x+1)} \frac{2.3x}{3x(x+1)} \\\\\frac{12(x+1)}{3x(x+1)} \frac{x+1}{3x(x+1)} \frac{6x}{3x(x+1)}\\[/tex]
Sper ca nu am gresit. Nu am mai facut asta de peste n ani.